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We use DNS of forced homogeneous isotropic turbulence with 2563 and 5123 grid points and
Reynolds number based on Taylor microscale up to 250 to examine a priori the scaling properties
of the subgrid-scale kinetic energy and its dissipation rate. It is found that the two quantities
are strongly correlated and a power-law scaling assumption holds reasonably well. However, the
scaling exponent, which was assumed to be weakly varying in previous studies, is found to change
considerably with the filter characteristic width.

In the Large Eddy Simulation (LES), the large-scale
features of the flow are resolved directly via numerical
scheme while the effect of the unresolved scales of motion
is accounted for by using subgrid-scale (SGS) models1.
From the point of view of LES model development, the
statistical information about behavior of the small-scale
flow quantities is of great importance, for it can be used
to verify the underlying assumptions of existing SGS
models and provide constraints that have to be satisfied
by the ones currently in development2–5.

The governing equations for LES are obtained by ap-
plying a filtering procedure to the Navier-Stokes equa-
tions. In this study we consider the incompressible case:
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Here ūi = ui ∗ G is the filtered velocity, P = p/ρ is
the modified pressure, ν is the kinematic viscosity and
τij = uiuj − ūiūj is the SGS stress tensor, which has to
be modeled. Summation over repeated indices is implied.
The filter kernel G is assumed to be non-negative and
satisfy ‖G‖1 = 1.

To solve the equations (1)-(2) numerically one needs to
have a model for τij . A sizable fraction of models for τij in
the current literature, referred to as one-equation models,
employ the SGS kinetic energy ks = τii/2 for modeling
τij : as a part of scalar eddy-viscosity6–8, tensor eddy-
viscosity9 or a particular scaling factor10–12. To obtain
ks one needs to solve an auxiliary transport equation:
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Here Π = −τijS̄ij is the term responsible for the en-
ergy transfer between resolved and subgrid scales (en-
ergy transfer term); S̄ij = 1

2 (∂ūi/∂xj + ∂ūj/∂xi) is the
resolved strain-rate tensor; Qi is the flux of ks due to in-
ertial and pressure terms, which is usually modeled using
eddy-viscosity Ansatz, and εs is the dissipation rate of ks

given by
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The quality of models for τij and εs is crucial for main-
taining the correct energy budget in LES. While model-
ing τij is responsible for the correct energy transfer be-
tween the resolved and subgrid scales and is ultimately
responsible for the stability of LES calculations that em-
ploy zero-equation models, the model for εs plays the
same role in LES calculations with one-equation models.
Usually modeling of εs is dealt with by using

εs ≈ Ck
k

3/2
s

∆
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where ∆ is the characteristic filter width (usually the size
of the LES grid cell) and Ck is either given a fixed value
Ck = 1.0 or determined dynamically6–8,13. This model
relies on the assumption that for a fixed ∆, εs scales as
k

3/2
s .
In general, the power-law scaling εs ∼ kγ

s has been
indeed observed, e.g., in experimental measurements in
atmospheric boundary layer14 or in a hyperviscous turbu-
lence simulation15. The former study reports the scaling
exponent γ to be close to 1 while the latter claims that
γ = 2/3 as a consequence of the fact that Kolmogorov
Refined Similarity Hypothesis16 holds not only for veloc-
ity differences, as originally formulated, but for other in-
ertial range quantities as well. In another study12 it was
observed that γ ≈ 1/2 gave the most plausible results
in the a priori tests in terms of collapse of the probabil-
ity density functions (PDFs) of the constant Cε in the
scale-similarity type model for εs:

εs ≈ Cε

[
2ks

Lii

]γ

ν

[ ̂∂ūi
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Here Lij = ̂̄uiūj − ˆ̄ui ˆ̄uj is the Leonard term for τij and
(̂·) denotes the test-filtering operation.

The purpose of this Brief Communication is to conduct
a priori testing of the assumption εs ∼ kγ

s using large-
scale DNS of forced isotropic turbulence. The outcome of
these tests provides us with the physical insight that can
be used in model development for εs, which is believed
to be of interest to both engineering and scientific LES
communities.

The incompressible Navier-Stokes equations were
solved in a periodic box with sides of length L = 2π and
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N grid points in every direction. A standard pseudo-
spectral algorithm was used, fully de-aliased by a com-
bination of spherical truncation and phase shifting17,18.
The turbulence is sustained by a deterministic forcing
term19. Two sets of data are used in this study: Set
1 with N = 256, ν = 1/900 and Set 2 with N = 512,
ν = 1/1800.

The condition kmaxη ≥ 1.1 was satisfied for all times
to ensure that all important flow scales are resolved20.
For Set 2, a stronger condition kmaxη ≥ 1.4 was sat-
isfied. Here kmax = N

√
2/3 is the maximum signifi-

cant wavenumber resolved by the grid, and η is the Kol-
mogorov length scale. The flow was initialized using ve-
locity components with Gaussian distribution and ran-
dom phases. Forcing was turned on and the flow was
let to develop for approximately 10 turnover times, and
after that the snapshots of the flow field were taken.
The consecutive snapshots were separated by the time
slightly larger than the eddy-turnover time so the data
is assumed to be temporally uncorrelated. The aver-
age Reynolds number based on Taylor microscale was
Rλ ≈ 185 for Set 1, and Rλ ≈ 250 for Set 2. Set 1 con-
tains 120 snapshots taken from three realizations with
different random number seeds, and Set 2 contains 108
snapshots taken from four different realizations. To ob-
tain resolved and SGS quantities, we used Gaussian fil-
ters with characteristic widths ∆ logarithmically spaced
from 0.074 to 3.0 (≈ 7η . . . 312η) for Set 1 and from 0.04
to 3.0 (≈ 7η . . . 526η) for Set 2.

First we show that the SGS dissipation εs plays an
important role in the energy budget. To demonstrate
this we plot in the Fig. 1 the value of 〈εs/ ε′ 〉 vs. the
SGS Reynolds number defined as R∆ =

√
ks∆/ν. Here,

ε′ = ν(∂ui/∂xj)(∂ui/∂xj) is the pseudo-dissipation, the
angular brackets denote the averaging across the entire
domain and over the snapshots. It can be seen that
〈εs/ ε′ 〉 exhibits logarithmic dependence on R∆ for small
R∆ (approximately R∆ < 100) and for R∆ > 200 the
SGS dissipation contributes more than 90% to the total
energy dissipation. Thus εs plays a crucial role in overall
energy budget.

Let us denote a = (ln ks − 〈ln ks〉)/σk and b = (ln εs −
〈ln εs〉)/σk, where σ2

k is the variance of (ln ks). Angular
brackets denote averaging over entire domain. In our
simulations, the probability density function (PDF) of
ks appears to be very close to log-normal and thus a is
very close to being a standard normal random variable.
By plotting the conditional average 〈b|a〉, averaged over
all snapshots, we can recover γ in εs ∼ kγ

s as the slope of
the graph.

We begin by plotting 〈b|a〉 for both sets of data in the
Fig. 2. On each panel, each curve corresponds to a filter
of different characteristic width ∆, ordered in ascending
order. Each subsequent curve is shifted by 0.25 up to
facilitate comparison.

It is evident that for all considered filter sizes, εs and
ks appear to be strongly correlated and the conjecture
εs ∼ kγ

s holds reasonably well. For ∆ comparable to the
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FIG. 1: Fraction of the dissipation represented by εs. Depen-
dence on the SGS Reynolds number.

Kolmogorov length scale η (lower lines in the Fig. 2), the
scaling exponent γ is close to 1. This filter size falls out-
side of the range reported in previous studies14,15, the
scaling can be understood using the following argument.
For ∆ close to η, using Leonard expansion21, we can ar-
gue that
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∂xj∂xk

∂2ūi
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∆2

(δu)2

∆2
∼ ∆2,

because the Taylor series approximation for δu for ∆/η
close to 0 gives δu ∼ ∆. On the other hand, ks = τii/2,
and τ(∆) ∼ (δu)2, as analytically shown by Eyink22.
Here τ is the magnitude of τij and δu is the magnitude
of the velocity increment over the separation length ∆.
Thus both ks and εs scale as (δu)2 for ∆ in the near-
viscous scale range.

For larger ∆, the scaling εs ∼ kγ
s still appears to hold

reasonably well for the bulk of data (the area |a| < 2 cor-
responds to about 95% of the data). The slopes of the
graphs diminish as ∆ grows but there is no indication of
any preferred value of γ. We plot the slopes extracted
from both sets of data in the Fig. 3; error bars denote
the variance of γ for each value of ∆. The slopes span
the range between approximately 1/2 and 1 without no-
ticeable plateau in the inertial range.

It should be noted that the curves in the Fig. 2 are
systematically concave downward with the exception of
the lowest curve in both panels. This indicates that a
simple power law εs ∼ kγ

s does not hold exactly in the
inertial subrange. However, taking into account the rel-
atively narrow dispersion of data in the Fig. 3, it can be
concluded that the power law provides an approximation
to the correlation between εs and ks that is reasonable
enough to be used successfully in SGS modeling.

When plotted against the SGS Reynolds number R∆,
the slopes from different datasets do not collapse to a
single curve (not shown). However, when plotted against
the filter width ∆ as in Fig. 4, the mean values of γ al-
most coincide for two sets of data. This, in our opinion,
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FIG. 2: The conditional averages 〈b|a〉. The dashed lines have
the slopes of 1 (lower) and 1/2 (upper). The solid curves
correspond to different filter width ∆, each subsequent curve
is shifted up by 0.25 to facilitate comparison.

indicates that γ might depend more on the ratio of ∆
to the lengthscale of forcing than on the SGS Reynolds
number. To illustrate the difference in R∆ between the
two datasets, we plot R∆ vs. ∆ in the Fig. 4. The clas-
sical scaling R∆ ∼ ∆4/3 is observed20. The values of R∆

for Set 2 are about twice as large as ones for Set 1. This
is explained by the fact that the only difference between
2563 and 5123 simulations is the value of ν while every-
thing else including magnitude of forcing is kept intact.
Thus, according to our data, in the inertial range the
values of γ change from 0.5 to 0.9, γ is close to 1 in the
near-viscous scale range and γ appears to depend more
on ∆ than R∆.

In conclusion, we found through direct numerical sim-
ulations of forced isotropic turbulence that the scaling as-
sumption εs ∼ kγ

s holds reasonably well for SGS Reynolds
number R∆ of up to 5000. However, the value of γ was
not found to be constant, as was assumed in previous
studies by various authors11,14,15, but rather to depend
on the proximity of the LES filter size ∆ to the forcing
lengthscale. None of the observed scalings are close to
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FIG. 3: Dependance of the average slope of 〈b|a〉 on the filter
width ∆. Error bars give the variance of the data.
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FIG. 4: Scaling of SGS Reynolds number R∆ with ∆. Lower
points correspond to the Set 1, higher points correspond to
the Set 2. The solid line represents the scaling ∆4/3.

εs ∼ k
3/2
s which is widely used in the current literature.

We found γ to be close to 1/2 for ∆ close to forcing
scale, which corresponds to results by Chumakov and
Rutland12; for ∆ in the near-viscous range the value of γ
is close to 1, in accordance with Meneveau and O’Neal14.
In the inertial range for both data sets, γ varies between
0.6 and 0.9 monotonically with ∆. The data from hyper-
viscous simulations15 falls in this range with γ = 2/3. It
should be noted that we do not see a visible plateau at
γ ≈ 2/3, as would be expected based on Refined Similar-
ity Hypothesis.
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